
Ethernet over SONET (EoS) Device Verification,
Leveraging SUPERLOG

Stefen Boyd

Boyd Technology, Inc.
Email: stefen@boyd.com

Tel: 408 739 2693

HDLCon 2001
Santa Clara, CA
March 2nd, 2001

Ethernet over SONET (EoS) Device Verification, Leveraging SUPERLOG Page 2 of 8

Abstract
The complexity of electronic device verification
continues to expand exponentially with device
size. This trend has caused the employment of a
diverse range of techniques, targeted at
minimizing the productivity impact of the
verification phase within the overall project
cycle. This paper proposes a verification
environment architecture for a typical
networking device, employing a case study to
illustrate good verification practices.
Components of the SUPERLOG language are
leveraged to demonstrate the power of the
capability when utilized for these applications.

Introduction
Choosing an effective verification methodology
is a critical element of hardware design projects,
and given the complexity of modern electronics
design, this task is fraught with difficulties. This
paper describes an environment for verification
of a device that encapsulates Ethernet packets in
SONET frames. Relevant methodology is
highlighted and examples are used to show
SUPERLOG implementations for stimulus
generation, output checking and verification
models.

The Verification Task
The ‘Design Under Test’ (DUT) is an Ethernet
over SONET (EoS) device, as shown in Figure 1.
This design was chosen as it represents a typical
level of device complexity, and includes standard
interfaces often utilized in the networking
industry.

The DUT has two primary interfaces. The
interface for the interconnection of Physical
Layer (PHY) devices to Link Layer devices
(PL3) will be referenced as the Local Area
Network (LAN). The other interface will be
referenced as the Wide Area Network (WAN)
since it connects to OC-24 SONET transceivers.
Ethernet packets are transferred between the
interfaces, and either encapsulated into (LAN to
WAN) or stripped from (WAN to LAN) SONET
frames. The Ethernet and SONET ports have a
one-to-one mapping. In a system, the LAN
interface would be connected to an Ethernet
PHY such as the PMC-Sierra S/UNI 2XGE. A
local processor bus is also provided for system
firmware diagnostics and to enable device
administration, for example the handling of error
conditions.

The proposed verification system will focus on
the top level testing of this device, as supposed
to individual block level tests. At this level,
testing will focus on the correct operation of the
entire device within the total system. The key
difference between this level and block testing,
apart from the amount of design data, is the
interface specifications; the top level tests
tending to utilize standard interfaces.

If the environment is constructed correctly,
designs with different applications can leverage
its components. A whole class of devices that
transport data from one interface type to another
could utilize this environment with a little

Serializer

De-
serializer

Framer/
Add

Header

Extract
Payload

Map
Payload

De-
mapper

Add
Header/

HEC

Strip
Header/

HEC

PL3
CORE

Serializer

De-
serializer

Framer/
Add

Header

Extract
Payload

Map
Payload

De-
mapper

Add
Header/

HEC

Strip
Header/

HEC

Local Bus

LAN

DIAG

WAN

WAN

Figure 1 – A Block Diagram of the Device Under Test

Ethernet over SONET (EoS) Device Verification, Leveraging SUPERLOG Page 3 of 8

additional complexity, enabling the verification
of many networking systems.

Environment Design Goals and Objectives
The primary goal of this environment is to
provide the maximum test coverage in as easy to
use a fashion as possible, enabling a reduction in
the writing and debugging of complex tests. This
has the benefits of easier maintenance, a more
robust and higher quality environment, and most
importantly, greater testing efficiency. Key
objectives that need to be observed are:
• Organization. A clear approach to the

organization of the environment components
makes it easier to understand and allows a
greater level of extensibility, important to
provide for the changing needs of this DUT
or for future applications.

• Reuse. A test environment often gets re-
applied to new designs, providing a known
validation procedure to unknown, new
design code. An ability to apply old tests
and prune out redundant code is important
for this purpose.

• Stimulus Generation. Since the data has few
dependencies, random transactions may be
used to stress the DUT, hunting down the
most complex of corner cases. This device
type lends itself well to directed stimulus,
where a packet generation model drives
different inputs, using parameters selected in
the testcase to provide content specification.

These may easily be extended into random
generation.

• Output Validation. Self-validating
testbenches provide a high degree of
automation, and the more completely the
environment checks the output, the greater
degree of confidence achieved. To achieve
this, the same Ethernet packet data used to
stimulate is passed to Ethernet checkers that
verify the integrity of data passing through
the DUT.

• Efficiency. This may be measured both in
term of man hours and tool execution.
Taking advantage of available levels of
abstraction improves both, and this is
relatively easy, as synthesis of the testbench
is not required. SUPERLOG provides
multiple constructs that enable abstraction to
be utilized.

The Verification Environment
The structure of the EoS verification
environment closely follows that of the DUT.

The environment is built around models that
interact with the DUT at each of the three
interfaces. Since the device is used for EoS, there
are Ethernet packet generator and checker
models on both the LAN and WAN interfaces of
the DUT.

SONET
PACKET

GENERATOR

SONET
PACKET

CHECKER

Send FIFO

Receive FIFO

ETHERNET
PACKET

GENERATOR

ETHERNET
PACKET

CHECKER

ETHERNET
PACKET

GENERATOR

ETHERNET
PACKET

CHECKER

DUT

PL3
BFM

SONET
PACKET

GENERATOR

Local Bus
BFM

SONET
PACKET

CHECKER

Send FIFO

Receive FIFO

ETHERNET
PACKET

CHECKER

ETHERNET
PACKET

GENERATOR

ETHERNET
PACKET

CHECKER

ETHERNET
PACKET

GENERATOR

Figure 2 – EoS Validation Models and Data
Flow

Ethernet over SONET (EoS) Device Verification, Leveraging SUPERLOG Page 4 of 8

The fundamental data structure flowing between
the LAN and WAN interfaces of the design is an
Ethernet packet, so our test environment will use
Ethernet packets as the basis for stimulating and
checking the output. The header, extended
header and HEC included into the SONET frame
will need to be checked for self-consistency. The
content of each packet from LAN to WAN or
vice versa is placed into a FIFO when it is
generated.

The Ethernet packet checker uses that same
FIFO to ensure the packet traversed the design
without error. Note that there are two Ethernet
generators and checkers on the LAN side. Even
though they travel over a single interface to the
DUT, this allows easier generation and checking
of the packets coming from or going to the
Ethernet PHY ports.

Synchronization is achieved throughout the
blocks using control signals between the models,
and a relatively simple set of tasks control
starting, stopping, status display and completion
for each test. The control signals are included
within a simple interface structure utilized by all
the models and the tasks are in the testbench
module. Other SUPERLOG enhancements are
used throughout the environment to provide
advanced messaging and code consistency
checking. These can be seen in examples as the
print task and “:label” usage at the end of
modules, tasks, etc.

The environment is structured such that the tests
themselves are separated from the testbench
components. This improves maintenance as
testbench change can be separated from the tests,
reducing the modification ripple affect. This also
helps the engineers see the “forest for the trees”
as they analyze their tests.

A key aspect of the testbench has to be its
“modularity.” Although the initial testbench has
been specified for use with two WAN and LAN
ports, it must be flexible enough to handle

multiple numbers of ports, as well as adapt to
changing interface requirements. This
requirement can be met by using a set of models
to describe interface detail and control those
models from the tests. This allows for the
substitution of models if the interface spec
changes, with a minimal impact on the higher-
level transaction tests that are driving the
models.

Another important benefit of model usage is the
abstraction it provides to tests. Tests only need to
specifically control behavior that is different than
the default. A test that only creates different
Ethernet packet types could run without
modification even if the PL3 interface was
completely replaced since it would not access the
PL3 BFM at all. An integrated Ethernet PHY
could be used to replace the PL3 core with
minimal impact on tests. Also, since the test only
configures the desired behavior, the models can
be used from many different sources. Not only
can Verilog models be used, C and C++ models
can be integrated into the environment without
using a PLI interface. Systemsim’s CBlend
technology makes calling these C and C++
models as easy as calling a Verilog model.

Test Generation
Given the hierarchical nature of the environment,
the tests will center on the parameter settings
required to produce the desired effect, with the
rest of the environment providing the structures
necessary to transform these parameters into
actual behavior. For example a test could set a
sequence of say 15 Ethernet packets, with
specific restrictions on data lengths and inter-
packet delay. The resulting test fragment (shown
in figure 3), simply needs to pass this
information into the respective model structures,
with the models doing the rest. This method
provides clear concise tests, which are easy to
write and maintain.

sample_test sample_test_inst;
module sample_test;
 initial
 if ($test$plusargs("sample_test")) begin
 top.activate(); // initialize design
 // initialize parameter lists
 top.eth1.ctls.length = {16, 256, 10, 1024};
 top.eth1.ctls.count = 15;
 top.eth1.ctls.delay = {0, 1, 5, 500, 10000, 100, 100000};
 top.run(); // execute test
 end
endmodule: sample_test

Figure 3 – Example Test

Ethernet over SONET (EoS) Device Verification, Leveraging SUPERLOG Page 5 of 8

There are a number of simple rules to be
followed when creating tests:
• The test name should be unique. The test is

instantiated as a top-level module. The
testbench is instantiated as “top” and
contains the tasks called by the test. Both
use SUPERLOG’s explicit instantiation of
top-level modules.

• The test is a module with no ports. With the
interactions loaded into models, no
input/output is required from the test, just
value settings.

• Optionally a plusarg can be used to activate
the test. This can save recompiling in
compiled code simulation just to rerun
certain tests.

• The test is structured as an initial block, with
the activate() task used to initialize the
design and perform any set up, followed by
the parameter settings, and finally the run()
task which executes the test.

Note two SUPERLOG features used in this
example. First, SUPERLOG has the ability to
initialize an unbounded array of values as a list
(similar syntax to concatenation of bits in a
vector). Second, a label can be placed at the end
of constructs such as modules and tasks. Unlike
a comment, this label is syntax checked to ensure
that it matches the declared name.
The basic Ethernet datastructure used throughout
the environment is shown in figure 4. This
structure is referenced by the FIFOs and utilized
by the generators and checkers to transfer
packets. The definition is similar to a structure
definition in C except that the data and pad fields
have a range of [0:$]. The ‘$’ in the range
specifies an unbounded variable sized array.
Using typedefs for the fields is good practice as
they can be shared with other structure
definitions for improved readability.

Default values are provided to portions of the
environment that are retained and used if the test
does not overwrite them. This simplifies test
requirements and also aids test creation. Note the
typedef of ep_ref. This creates a pointer to an
eth_pkt that is used in much of the environment.

If error conditions need to be inserted into the
simulation, they may be controlled in a similar
fashion to other stimulus. The environment can
contain additional parameters to drive errors, and
these errors are then set up using the same test
structure as before. This facilitates cross
environment communication, as it is likely that
an error introduced in one part of the
environment will require checking in another, for
example a CRC fault in a generated packet may
well result in the packet dropped from the list to
be checked. Additional interfaces, such as the
diagnostic link, will require checking for the
dropped packet.

Output Checking
There are various methods that are commonly
employed to check test output, some better than
others. In complex test environments such as
this, it is key that the environment provides
checks which are run during simulation, as this is
the only way that rigorous validation of results
will occur, especially after the design has gone
through numerous iterations and the test re-run
countless times.

In this environment, one of the major tests is the
correct transmission of packets through the
DUT. As packets are generated, a pointer to the
packet is passed to the FIFO, which is then used
by the checker at the other end to ensure that the
same data is transmitted from DUT. The FIFOs
are implemented using a SUPERLOG interface,
which allows the queue datastructure to be
packaged with transaction tasks, and the whole

typedef bit [6*8-1:0] eth_addr_type;
typedef bit [2*8-1:0] eth_len_type;
typedef bit [3*8-1:0] eth_fcs_type;
typedef struct {
 eth_addr_type dest_addr, source_addr;
 eth_len_type length_type;
 byte data[0:$]; // variable length field
 byte pad [0:$];
 eth_fcs_type fcs;
} eth_pkt;
typedef ref eth_pkt ep_ref;

Figure 4 – Ethernet Packet Structure

Ethernet over SONET (EoS) Device Verification, Leveraging SUPERLOG Page 6 of 8

ensemble then referenced in the environment,
much like a C++ class. SUPERLOG queues are
used to facilitate the datastructure, allowing
flexibility in the size and handling of the FIFO.
Parameters are also used to set the type of queue,
such that the structure may be utilized for
different situations.

Protocol Monitors are very effective mechanisms
for quickly catching errors and aiding debug.
While serial interfaces can be verified almost
completely by checking the data on the interface,
bus interfaces, such as PL3, often have more
complex requirements. SUPERLOG provides an
effective assertion mechanism, which may be
used to construct monitors of this sort. Used with
syntax for branching and parallel checks, a
monitor can be quickly constructed using easy to
understand Verilog syntax. Since this aspect of
SUPERLOG has not yet been publicly released,
the PL3 protocol monitor is not included in this
paper.

Ethernet Generator and Checker
To illustrate the characteristics that should be
part of all the models in the environment, the
Ethernet models will be examined. They
illustrate desirable verification model features.
The Ethernet generator demonstrates how the
model supports the parameterized generation of
packets to provide directed testing. Not only
does the Ethernet checker use a number of
interesting SUPERLOG constructs, it highlights
the benefits of SUPERLOG interfaces. These can
be seen by their impact on simplifying the

checker and the efficiency gained when used for
model-to-model communication.

The Ethernet Generator is the primary source of
stimulus data for the environment. It creates new
eth_pkt structures and populates the fields based
on the parameter settings given by each test. The
structure used to define the packets, shown in
figure 5, need not have values for every field.
Empty fields imply default behavior. Each
generator has a default eth_pkt that is modified
so the unassigned fields remain valid. Since
other models use the same type of controls, tests
need only set parameters where non-default
behavior is required. Note that the use of
unbounded arrays (‘[0:$]’) is what supports the
list-style initialization shown in the sample
testcase.

Each LAN/WAN port pair has a generator
instance, FIFO, and checker in each direction.
Packets are placed into the corresponding FIFO
by the generator for use by the checker.
Although the body of the generator is not shown,
it uses the same env_ctl interface to start or abort
packet generation and to indicate to the
environment that it has completed packet
generation.

The Ethernet Checker (figure 6) will ensure that
Ethernet packets traverse the DUT without
modification. This model is a little simplistic as
the final model should be able to cut down on
spurious error messages by recovering from
trivial errors, such as picking up the correct
comparison again after a dropped packet error.

typedef enum { NONE,
 BAD_FCS} error_type;
typedef enum { RANDOM,
 PATTERN_A5,
 PATTERN_5A,
 INCREMENT,
 USR_DATA} data_gen_type;
typedef struct {
 error_type error_type[0:$];
 data_gen_type data_gen[0:$];
 byte data[0:$];
 eth_addr_type dest_addr[0:$],
 source_addr[0:$];
 eth_len_type length[0:$];
 // pad and fcs are auto-generated
 bit [31:0] delay[0:$]; // cycles between packets
 int count;
} eth_gen_ctl;

Figure 5 – Ethernet Packet Generator Control Structure

Ethernet over SONET (EoS) Device Verification, Leveraging SUPERLOG Page 7 of 8

The also needs to set exp_pkts to 0 when there
were no more packets to check.

The env_ctl interface is simply a collection of
two events and a wand. The checker uses the
start and done events to enable and disable
checking. Not only does the done event prevent a
new check from starting, it disables a pending
check. This would only be used to abort a test.
Completion is indicated to the environment and
other models by driving the complete wand. This
leverages low-level Verilog wire resolution to

indicate a 1 only when all of the models have
finished generation and checking.

Packets are received from the DUT through the
dut_out interface. This is not a unique interface,
but one of two interfaces that provide the same
get_pkt() task. The interface provides abstraction
of PL3 or SONET to the checker by giving a
single common access method. It is inside that
interface that the eth_pkt structure is added to
other encapsulated packets in a SONET frame,
or is passed to a PL3 BFM using the BFM task

module eth_chk(interface dut_out,
 interface checker_pkts,
 interface env_ctl);
 bit active = 0,
 exp_pkts = 0;
 ep_ref dut_ep, check_ep;
 assign env_ctl.complete = !exp_pkts;

 always @(env_ctl.start) active = 1;
 always @(env_ctl.done) begin
 active = 0;
 disable CHK_BLK;
 end
 always begin: CHK_BLK
 dut_out.get_pkt(dut_ep);
 if (active) begin
 if (!checker_pkts.empty()) begin
 checker_pkts.pop_data(check_ep);
 if (notequal(dut_ep, check_ep))
 p.print(p.ERROR,
 "%s %m: %s\n%s%s%s",
 "Data miscompare in",
 "Expected packet:",
 p.struct_prettyp(check_ep),
 "Actual packet:",
 p.struct_prettyp(dut_ep));
 end else begin
 p.print(p.ERROR,
 "%s %m: %s\n%s%s%s",
 "Unexpected packet in",
 "Recieved packet:",
 p.struct_prettyp(dut_ep));
 end
 end
 end: CHK_BLK

 function bit notequal(ep_ref dut_ep,
 ep_ref check_ep);
 // compare fields of ep_ref structures
 endfunction: notequal

endmodule: eth_chk

Figure 6 - Ethernet Packet Checker

Ethernet over SONET (EoS) Device Verification, Leveraging SUPERLOG Page 8 of 8

calls. So long as there is a get_pkt() task that
returns a pointer to a populated ethernet packet
structure, the interface can communicate with
any kind of model (Verilog, C, C++) through
task calls, or even the DUT by causing the
appropriate signal transitions on bus or serial
connections.

Every packet received from the DUT will be
checked against the packet placed in the FIFO by
the generator so long as the checker is active.
Packets that are unexpected (because the FIFO is
empty) or are incorrect will cause an error to be
generated. Note that the error messages use a
print function that is in a top-level module
instantiated as ‘p.’ It is good practice to
standardize the messages and it allows pass and
failure statistics to be generated simply by the
number of errors displayed. This task also takes
advantage of SUPERLOG’s ability to pass
variable numbers of arguments of any type to a
task.
Unlike the interface used for the dut output, the
FIFO (checker_pkts) interface will be identical
for all instances of the checker. Although it is
identical in this environment, another project
might substitute a different interface to to better
represent the operation of it’s DUT. So long as
empty() and pop_data() tasks are provided by the
new interface, the Ethernet checker can be used
without modification. This is true even if the
interface is no longer a FIFO, but instead
implements complex quality of service
algorithms by calling a C model of the design!

Summary
This paper provides a perspective on some good
techniques, using a practical case study.
Guidelines were given for the architecture of an
environment that is capable of verifying many
types of network devices. A scalable and
modular environment was presented that can be
adapted to other networking designs and
embrace new verification features as they are
added to the SUPERLOG language. Finally,
significant portions of the environment have
been shown in examples to illustrate features that
are currently available in the language.

References
1. T1X1.5/99-268r1 Generic Format for
Carrying Ethernet MAC Frames over SONET,
October 4-8, 1999.
2. Flake, SUPERLOG 2000 Language Definition
G3, October 2000.

