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ABSTRACT

Vera adds powerful language capabilities for verification. The setup for a self-checking
environment of a DMA engine requires the ability to anticipate a variety of potential transactions
at the interfaces of the DUT. Since the interaction between the DUT and the environment is
complex, the elements of the test environment must be able to handle the complexity. If the
verification engineer has to deal with those complexities, the testing of the DUT will suffer.
Instead of focusing on exercising the DUT, the engineer will focus on getting tests to work.
Vera provides features that allow an environment to be built which can hide the complexity of
testing from the verification engineer. This paper will show how the use of Vera features, such as
re-entrant tasks and the ability to pass objects by reference, allow the verification engineer to
focus on what, not how, to test.
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1. Introduction
Before getting into the details of what was done in the test environment to verify the DMA
engine, I will talk a little about the device being tested and some of the philosophies behind
the testing. Since I’m talking about the testing of a DMA engine, I’ ll cover the interfaces of
the device but will not go into detail about the internal architecture. I will go into some of the
details of the DMA engine as it impacts the design of the test environment.

After the brief introduction to the problem, I will talk about the two parts of the verification
effort required. First, there was a need to improve the way tests were written to stimulate the
device. Second, the results must to be validated or checked to make sure the results of the
stimulus were what was expected. I will discuss the solution to these problems and examine
the Vera code used to implement that solution. Finally, I will add some reflections and
recommendations.

2. The Design

Figure 1: Block Diagram of DUT

The DMA controller is part of a CPU host bridge (Figure 1). Resources are accessed as 64-
bit memory-mapped interfaces. The CPU interface is able to access resources in the other
portions of the chip using base address registers. The DMA controller uses the same base
address registers (BARs) as the CPU interface. Although there is a separate set of BAR for
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masters on the PCI interface to access resources through the device, they don’t affect the
operation of the DMA controller.

As mentioned above, the controller uses the same address mapping as the CPU interface for
determining the source and destination of a transfer. This mapping table, therefore, will be
important to ensure the test environment and the chip use the same address mapping. The
controller supports four channels with a linked list of chained commands, but only one
channel can be active at one time. Each channel passes control to the next one in a round
robin fashion after completing a command. Since the channel may have a linked list of
chained commands, this means that the activity that is setup on a particular channel will not
necessarily complete before another channel is given a chance to initiate a transfer.

Each command contains the following information: source address, destination address,
transfer length, controls, and chaining address. The controls allow the use of a fixed source
and/or destination address, chained commands, poll versus interrupt for command
completion, command abort, and command suspension. The first command must be written
into the device registers but additional chained commands are written into the SDRAM
memory model at the address specified in the previous command.

3. Ver ification
There are two parts to the verification effort. There needs to be a plan for the stimulus of the
design and for the validation of the outputs from the design. I considered the stimulus and
validation already in use and several possible improvements.

When I first became involved with this project, it was clear that new methodology was
needed to validate the DMA engine. The controller was tested at the top level of the design.
This meant that the interfaces for the testing were all the standard external interfaces. It also
meant that the simulations were slow and had to run on large machines because the entire
design was being simulated. The benefit was that there were commercial models for all the
interfaces. Although there would have been a significant benefit in performance to test just
the DMA engine separately, the effort was better spent improving the stimulus and the
validation of the design.

3.1. Stimulus
Since there were already models that interacted with the design at the transaction level, the
tests were written using bus functional models (BFM). To create a test, the BFM calls would
be cut and pasted into the test. In order to create more than one command, there would be
more cut and paste. The problem was that every test required a huge investment of time to
debug. Unfortunately, structured programming was not used to abstract the creation of the
stimulus.

The first step was to create task that would require only the minimal user input to create a
DMA transfer. The goal was to easily write tests that could initiate multiple DMA transfers.
It must automate the process of setting up the DMA in either DUT registers or off-chip
memory depending on whether it was the first DMA of a chain. It must also to handle
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resource sharing and pacing so the test writer would not have to be concerned about two
DMA transfers being setup simultaneously on the same channel.

The do_dma task was created as the single task a test writer would need to create tests with
any amount of complexity. It is the only task a user must call in order to perform a DMA
transfer. All the setup and controls for the transfer are handled inside this task.

Figure 2: do_dma Task Definition

As can be seen from the task definition, there are three required parameters to control the
source and destination addresses and the size of the transfer. What was previously a long and
complicated test to write now become several calls to do_dma. The optional arguments are
described later in this section.

3.1.1. Simple Test Example
The example in Figure 3 shows how simple a test can be. In this example I am using all the
defaults for the initialization values of base address registers. Once the initialize method of
the chip_init class has been called, I am ready to begin making do_dma task calls. Since the
base address registers are stored in the chip_init class, I can either use a constant to select the
address I wish to use as a source or destination of the transfer (the PCI address of this
example), or I can use the value stored in the object and add an offset (the Local Bus address
of this example). The latter form is more robust as it allows tests to be copied and modified
with less chances for error. A larger example is shown in Section 3.4 that exclusively uses the
base addresses stored in the object when creating DMA transactions.
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Figure 3: Simple Test Fragment

3.1.2. Addressing
This device uses a flat memory model with an address space of 64 bits. The physical device
interface used as a source or destination of a transfer depends on a table of base addresses
registers. Because do_dma needs to know what these register initializations are in order to
initialize the memory at the source interface, a global class (chip_init_class) is used to hold all
the register initialization values and perform the initialization of the device. Using this class,
do_dma determines which interface contains the memory being initialized for a transfer. It is
also used for the output checking as described in Section 3.2.4.

3.1.3. Initializing Source Memories
With the exception of the PCI, all interface memories were initialized using CPU writes.
Although it was more of a side effect than planned feature, there was a benefit to filling the
other memories using CPU writes. Since each transaction was enabled as soon as it was
setup, the CPU writes for memory initialization provided background traffic for the DMA
transfers in progress and uncovered a number of bugs. The Vera PCI models had some
unique benefits that will be covered in more detail in Section 3.2.5.

3.1.4. Optional Arguments
Optional arguments aren’ t as nice as polymorphism. Polymorphism in languages such as C++
allow multiple definitions of the call with different types of arguments. That would have
made it a little easier to create different do_dma calls with unrelated sets of optional
arguments, but it is still a nice Vera feature. By putting the more common optional arguments
toward the front of the list, most tests don’t need to include all the arguments. This means
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that it’s easier to understand what a test is doing, even if it is using some of the optional
arguments.

Channel number tells do_dma to either select the next available channel (value > 3) or select
a specific channel (0-3). do_dma will use this to determine which channel to setup. ctl_mask
allows for different behavior of the DMA engine to be tested. By default, the testbench
cheats and looks at the internal status bits to determine if a DMA is complete. The control
bits can tell it to use the interrupt controls on the CPU interface or to poll for the DMA
completion. It can also abort or suspend (for a random delay) a DMA in progress. Since the
engine can use a single address instead of a block of addresses for either the source or
destination, there are controls for these as well. One of the more useful controls is chaining
enable. This will use the next do_dma call to supply the next link in the chain, rather than
setup a new DMA transaction for another channel. All controls are enabled by a bitwise or of
defined constants that each have one bit set in a single bit position.

The rand_mask parameter allows some of the other parameters to be used as masks for
randomization. A random request for src, dst, or size will bitwise or the random value with
the mask provided. Random completion check will randomly select probe, poll, or interrupt.
Random chain enable creates chains of random lengths. Finally, instead of doing round robin
selection of the next channel for a DMA, the channel can be chosen randomly.

Figure 4: Setting Random Size Code Fragment

The implementation of random size is shown in Figure 4. This is typical of all the random
masks. The only requirement made on the generated size is that is comes out non-zero. So if
the size was ‘h44, potential sizes are ‘h04, ‘h40, or ‘h44.

3.1.5. Concurrent Execution
To properly test the DMA engine, all channels need to potentially be active simultaneously
with chained commands. This means that multiple chains of commands could be setup before
the first command has even begun to be transferred. Since Vera tasks are re-entrant (the
variables declared inside the task are created on a stack compared to the static variables of
Verilog), there was no problem of having multiple tasks running simultaneously. The do_dma
task also takes advantage of the ability to fork a process into the background. Once
initialization of the source memory has completed, the rest of the setup is done in the
background. This allows the DMA controller to execute the commands in a different order
than the do_dma calls.

Since the completion of the test cannot be determined by the completion of the last DMA
command, a semaphore is used. Each call of do_dma adds one more semaphore and the
completion of that command removes a semaphore. The main test is able to determine that
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the last command has completed when there are no more semaphores. The roles semaphores
played in the verification effort is detailed in Section 3.2.6.

3.2. Output Checking
Output checking on the project was inadequate. When writing the test, data validation was
almost completely done by visual examination of the waveforms. This is bad because it is not
automated and when verification is not automated, the quality will degrade over time. The
primary indication of passing or failing tests was simply whether the DMA engine indicated it
was done.

The decision had been made to use a higher-level approach to stimulating the design with the
do_dma task. Since this task centralized all the stimulus, it also made it easy to consider new
approaches to how outputs would be checked. The first two approaches were considered,
but the last one was the one implemented.

3.2.1. Use “ golden” log file for comparisons
Since one of the problems was validating that the test resulted in the same behavior as a
previous run, one approach would be to compare logs with a previous run. This requires
displaying all the information about the simulation transactions to the log. The benefit is that
there is not a dependency on a human observing the transactions every simulation run. It does
require that the transactions are validated by hand the first time the simulation is run, but then
a simple comparison of the logs will ensure that the proper behavior is observed every time.

It still requires hand validation the first time and any behavior not reflected in a display
cannot be checked automatically. Another problem is that the same test can’t be used with
different clock speeds at interfaces. Performing comparisons fails when the timestamps or
even the order of the transactions are different in the log files.

3.2.2. Stimulate and compare memories at interfaces for expected results
Another low effort improvement would save the results from each transaction into memories
at each interface. At the end of the test, the values in the memories could be compared
against the expected values and a pass or fail status could be displayed. This requires a little
more work than simply using a golden log file, but it is not dependent on the speed of the
interfaces or other implementation changes that would affect the exact timing of individual
transactions, or the relative timing between different interfaces.

Since DMA data is usually moved from one interface to another, the expected data would
likely be in another memory for another interface. There are some general problems with this
approach, and some which are specific to this type of DMA engine. In general, there is the
problem that not all data traveling over an interface will have a unique address. This can be
overcome in part by planning the stimulus with non-overlapping data. Problems occur with
data overruns because they can go undetected when they do not modify the final result. In
this application, there is the ability to send an entire block of addresses to a single address or
vice versa. When filling an entire destination block of addresses from a single address, all the
written data is observed. But if a block is written to a single location, only the last data value
written is observable.
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3.2.3. Stimulate and account for all transactions on interfaces
This is the approach chosen for checking the outputs of the design. It is best to ensure that
every transaction is expected. Checking all the transactions on the fly will not just ensure that
the expected data was observed at the correct interface, but will ensure there is no
unexpected data slipped through unnoticed. My effort was in creating transaction checkers
that looked at the data passing through the interface.

Since the interfaces adhere to standard protocols, the correct operation of that interface can
be checked using a protocol monitor. Although I did not have time to ensure that every
interface had a protocol checker or monitor, some of the interfaces had monitors already
implemented. The memory models checked the protocol at the SDRAM interface and the
PCI models had a checker as well. This relieves the data validation from looking at low-level
signals.

This will catch a wide variety of errors. It catches the simple errors where the wrong data is
transferred. Since it is done when the transfer occurs, the user will be informed about the
problem much closer to the point of failure. Whereas errors reported at the very end of the
simulation require considerable effort to find the transaction that caused the failure, this
method will immediately identify the transaction causing the failure. Additional information
can be displayed for the user in a DMA application that will help the debugging process that
would otherwise be more difficult. For example, information about the DMA request can be
provided along with the error to ease the job of determining which DMA was in progress at
the time of the failure.

3.2.4. Output Checking and the chip_init_class
The chip_init_class was important for the stimulus to know where to preload the source data
for the DMA, but even more important for checking the outputs. Since each output had
output checkers (i.e. the SDRAM had an sdram_expect task), do_dma needed to know
which interface to expect the reading of data as the source and writing of data as the
destination. As can be seen from the code fragment in Figure 5, the address can easily be
used to determine which device and which interface has been selected.

Figure 5: Expector Selection

3.2.5. Vera PCI Models
Since the model was written in Vera, it was able to create dynamic slave models on the fly. I
was able to use this feature to dynamically create slaves that would be used as the source or
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the destination of the transaction. This effectively allowed the creation of an infinite number
of slave models that would dynamically appear as needed. The biggest benefit was that I
didn’ t have to write a monitor for the PCI bus to get the data I needed. I could use the
models to wait for a transaction, and let the pci_expect task that belonged to that transaction
either provide data (on a read) or do a simple compare of the data (on a write). The models
took care of the hard work of handling all the different oddities of the protocol.

3.2.6. Semaphores and Mailboxes
Semaphores were used extensively to synchronize the many threads that were active
simultaneously. The semaphore already mentioned was the dmatest_done_sem. This was
used as a way to keep track of the transactions that were still outstanding. Note that all the
tests had the same code at the end as is seen in Figure 3. The top level of the test has to wait
for all the threads to complete before it can terminate the simulation. To do that, it checks to
see if there are any remaining semaphores left in the bucket. If so, it throws it back in and
waits a few clock cycles before checking to see if an expector finally pulled it out on
completion.

Another use was to create a simple high-level version of the round-robin arbitration done
inside the DUT. By passing a semaphore between the different expectors, the one that was
supposed to see an active DMA could know that it was the only one that should be active.
This is important since I wanted to ensure that a DMA taking too long would produce a
timeout error. A timeout error on an inactive DMA channel would be bad.

The mailbox was another useful feature used to synchronize the different threads. The expect
process starts in parallel with the setup of the device registers. But the expect process needs
to know information that will not be available until after the setup is complete. Since the
setup process will not return immediately when it is supposed to pause or abort a transaction,
this information can’t be passed sequentially, so I used a mailbox to pass the information
from the setup to the expector. Figure 6 and Figure 7 show fragments of the code sending
and receiving the messages.

Figure 6: Setup Task Mailbox Sending
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Figure 7: Expector Receiving Mailbox Messages

3.3. Implementation
Most of the verification effort went into the body of do_dma. To enable some of the stimulus
and validation portions of the task, the initialization had to be rewritten to use a class to hold
the initialization data. Another simple object was created inside each do_dma task to hold the
data for use in stimulus and checking expected data.

3.3.1. chip_init_class
This class allowed the do_dma task to know important configuration information about the
environment. These values could have been placed into global variables (and many of them
were previously stored in global variables), but maintenance of those variables was extremely
painful. The declaration with tasks stubs is shown as Figure 8.

Figure 8: chip_init_clas Definition
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3.3.2. do_dma Body
The flow of the DMA engine verification can be seen inside the body of the do_dma call
(Figure 9).

Figure 9: do_dma Body

3.3.2.1. Local Variables
There are three important local variables used inside this task. The expected data will be
setup in the exp_data_class instance exp_data. For PCI this will be used to dynamically drive
the source data onto the bus, but since the other interfaces have Verilog models, they are
initialized using the CPU interface. All interfaces will use this class when it’s passed to the
dma_expect task, which is forked off into the background when the setup of the control
registers are competed.
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I use a mailbox between the setup of the control registers and the expector to inform the
expector of important information, such as a failure to setup the command, or that the
command is chained and busy will not go away until a later command has been completed.

3.3.2.2. Setup Data
The default base address for the location of chained DMA commands can’t be set in the
header of the task, so I use a bogus value to indicate that I should set the default value.
Because I use an object for the expected data, I am able to indicate whether the expector
should see incrementing addresses at the interfaces. It’s worth noting that I validate the
transactions at every interface. I account for both the source and destination transactions.
The setup of the data patterns and the filling of the source memories is done by the
dma_setup_src task.

3.3.2.3. Setup Command and Expect Data
Normally, the command setup will complete before all the expected data has been observed.
In this case, the dma_setup_ctrlregs will complete and leave the dma_expect running in the
background. I take advantage of the ability to leave the validation running after the command
is setup and will return the control to the test. This allows multiple commands to be setup
without having to block execution at the test level. The setup task informs the expector when
the DMA setup has been completed, which channel I am using, and if the command will be
chained to another.
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3.4. Larger Example

Figure 10: Larger Example Test
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4. Conclusions and Recommendations
The easy part was improving the stimulus. It wasn’t too hard to handle the different
requirements for setting up DMA commands in the chip or in memory. What proved much
harder was creating the dynamic checkers. The only checker that was easy was the PCI since
it already had tasks that could be used to look for transactions and get transaction data. All
the other interfaces needed transaction snoopers created that could extract out the
transaction information for doing the expected data checking. This proved to be the most
time consuming to get right.

This implementation was done under tight time constraints (what project isn’ t). As a result,
there were a number of alternate implementations that were not explored. If do_dma had
been implemented as a class instead of a task, there would have been a little more flexibility
with parameters and configurations. Because this would be harder for many engineers to
maintain, care would have to be taken to make sure it was well documented. The usage
would have to be thought through so that the flexibility wasn’t paid for with excessive
verbosity. This might be the best long-term solution since it would allow for additional
functionality without breaking any of the existing tests.

This is a large enough block of a design to benefit from module level testing. If there were an
effort to test many of the large blocks at the module level, there would have been models for
the internal shared interfaces that would have made creating an environment for this block
much easier. The resulting testing could have exercised many more odd corner cases on this
block with less simulation effort.

Vera’s optional task arguments are a great improvement over Verilog, but since there is still
a restriction of a single task with a particular name, overloading can’t be done. In some of the
common tests, excess arguments had to be passed just to fill positions to get to the one I
wanted.

It would have improved performance to use backdoor access to the memories in the local bus
slaves and the SDRAM. It’s an enhancement that could be considered since it would cut
down on some potentially wasted bandwidth. But since this bug has been exploited as a
source of background traffic, the environment would need to be enhanced to support
background traffic generation as well if this were removed.


