
Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 1

Draft Standard for Verilog Transaction

Recording

Extensions

Copyright © 2003 by Cadence Design Systems, Inc.

This proposal has been prepared by Cadence Design Systems, Inc. for consideration by the
IEEE 1364 working group for inclusion in the next revision of the IEEE 1364 standard.

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 2

1. Introduction... 3

1.1. Scope... 3
1.2. Purpose.. 3
1.3. Requirements .. 5

1.3.1. Allow users to explicitly express transaction activity....................................... 5
1.3.2. Semantics for automatic transaction recording... 5
1.3.3. Extensions to VPI to provide access to transaction objects.............................. 5
1.3.4. Extensions to VCD for transaction recording... 6

2. Transaction Recording System Tasks and Functions ... 6
2.1. $tr_open: Open a transaction recording file.. 6
2.2. $tr_close: Close a recording file ... 7
2.3. $tr_set_recording: Enable/disable transaction recording at a specified scope.......... 7
2.4. $tr_stream: Create a transaction stream.. 8
2.5. $tr_generator: Create a transaction generator in a stream .. 9
2.6. $tr_begin_attribute: Define an attribute of a generator that is set at the beginning of
a transaction .. 9
2.7. $tr_end_attribute: Define an attribute of a generator that is set at the end of a
transaction ... 10
2.8. $tr_begin: Begin a transaction .. 10
2.9. $tr_end: End a transaction .. 11
2.10. $tr_record_attribute: Record an attribute on a transaction 11
2.11. $tr_get_transaction_handle: Get a transaction handle from a stream................. 12
2.12. $tr_link: Link two transactions ... 12

3. Automatic Transaction Recording .. 12
4. Extensions to VCD for Transaction Recording .. 13
5. Transaction Recording VPI Extensions .. 13
6. Example .. 14

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 3

1. Introduction

1.1. Scope

This proposal extends Verilog 1364-2001 to allow users to record transactions. A collection
of system tasks and functions are proposed which can be used to explicitly record
transactions. A method for automatic transaction recording is proposed, in which no
additional code needs to be added to a design. Extensions to the VCD format are proposed so
that transactions can be represented in a recording file. Finally, extensions to VPI are
proposed to allow access to transaction objects in the design, and to transaction recording
activity.

1.2. Purpose

The proposed extensions will allow users to raise the level of description, analysis and
debugging of their designs to the transaction level. A transaction can represent for example:

• A transfer of high-level data or control information between the test bench and the
design under verification (DUV) over an interface.

• Any sequence of signal transitions recorded in the simulation database as a
transaction

A transaction has a begin time, an end time, and attributes. Examples of transactions include
read operations, write operations, and packet transmissions. The transaction level is the level
at which many users think about the design, so it is the level at which you can verify the
design most effectively.

Transactions are recorded on streams, which users define at hierarchical positions in the
design. A stream can contain generators, which users define to describe the kinds of
transactions that are created during simulation. Each generator defines a collection of
attributes which are defined by users, and which are meaningful to the transaction. The
values of attributes are set for each transaction. Finally, transactions can be linked to each
other. A link has a direction and a user-defined name, and specifies a relation between the
two transactions.

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 4

Here’s an example:

 module top;
 wire [7:0] addr, data;
 wire do_write, do_read;
 cpu_testbench cpu_tb_inst(addr, data, do_write, do_read);
 cpu_duv cpu_duv_inst(addr, data, do_write, do_read);
 endmodule

 module cpu_testbench(addr, data, do_write, do_read);
 output [7:0] addr, data;
 output do_write, do_read;
 reg [7:0] addr, data;
 reg do_write, do_read;
 integer cpu0_stream;
 integer write_generator, read_generator;
 integer transaction_handle;

 initial begin
 $tr_open(“tr_file”);

 cpu0_stream = $tr_stream(“cpu0_stream”);
 write_generator = $tr_generator(cpu0_stream, “write”);
 read_generator = $tr_generator(cpu0_stream, “read”);
 $tr_begin_attribute(read_generator, addr);
 $tr_end_attribtue(read_generator, data);
 $tr_begin_attribute(write_generator, addr, data);

 // Do a write to the DUV:
 addr = 10; data = 15; do_write = 1;
 transaction_handle = $tr_begin(write_generator);
 // wait until the write is complete
 do_write = 0;
 $tr_end(transaction_handle);

 // Do a read from the DUV:
 addr = 11; do_read = 1;
 transaction_handle = $tr_begin(read_generator);
 // wait until the read is complete
 do_read = 0;
 $tr_end(transaction_handle);
 end
 endmodule

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 5

1. The top-level instantiates a “cpu” DUV, and a cpu test bench.
2. Transactions are recorded in “tr_file”.
3. A stream is used to represent the transaction activity on a cpu interface. The name of

the stream is “cpu0_stream”, and it is positioned at “top.test.”
4. There are two transaction generators: “read” represents read transaction activity, and

“write” represents write activity.
5. Each generator has two attributes: “addr” contains the value of the address, and

“data” contains the value of the data. For read transactions, the addr attribute’s value
is set at the beginning of the transaction and the data attribute’s value is set at the end
of the transaction. For write transactions, both the addr and data attributes’ values are
set at the beginning of the transaction.

6. When a write to the DUV is initiated in the example, a write transaction is begun. The
values of the addr and data variables are recorded in the associated attributes of the
transaction. The write transaction is ended when the write operation is completed.

7. When a read from the DUV is initiated, a read transaction is begin. The value of the
“addr” attribute is set to the address that will be read.

8. When the read activity is complete, the value of the “data” attribute is set, and the
transaction is ended.

9. If this activity had been caused by some other higher level activity that is also
represented by a transaction, then “successor” and “predecessor” links with the other
transaction can be explicitly made with the $tr_link task. Or, if these read and write
transactions are used to provide detailed information of a larger transaction, then the
transactions can be linked as “parent” and “child” relations.

1.3. Requirements

1.3.1. Allow users to explicitly express transaction activity

Users should be able to specify in their Verilog code:

1. When a transaction starts and ends
2. The names and values of attributes of each transaction
3. The stream and generator on which a transaction occurs
4. Ability to get a handle to a transaction, so this transaction can be referenced

elsewhere
5. Link this transaction to another transaction
6. Ability to turn on/off recording, for the full design or for parts of it.

1.3.2. Semantics for automatic transaction recording

It should also be possible to get limited transaction recording without any additional
transaction recording Verilog code.

1.3.3. Extensions to VPI to provide access to transaction objects

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 6

A VPI application should allow users to:
1. Register callbacks on transaction events, such as begin and end
2. Traverse the collection of transaction objects
3. Create transaction objects, and cause transaction activity

1.3.4. Extensions to VCD for transaction recording
Define a way in which transactions can be recorded within the current VCD format, or if not
feasible then define extensions to VCD.

2. Transaction Recording System Tasks and Functions

This section lists the proposed systems tasks and functions, which will have a $tr_ prefix.

2.1. $tr_open: Open a transaction recording file

integer my_tr_file_handle = $tr_open(
 “transaction_file_name”,
 (list_of_argument_pairs))

This function allows you to explicitly open a transaction recording database. The first
argument is the name of the file that will contain the transactions. If this argument is omitted
then the default name is implementation dependent.

$tr_open returns a handle to the recording file. This handle can be used to explicitly refer to
a particular transaction file, which is useful if multiple files are required.

The list_of_argument pairs is optional. This proposal specifies that the standard have one
kind of argument, but other argument kinds that can be tool-specific. These other argument
kinds should ignored without errors or warnings by those tools that don’t support the
argument.

The first argument in the list_of_argument_pairs describes the kind of argument, and the
second argument contains the value.

The proposed standard argument kind is:

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 7

Argument_kind string Value Effect
“scope” Levels “scope” specifies a hierarchical scope in the

design, and levels specifies the depth to which
transaction recording is enabled. If the levels
argument is omitted or its value is 0 then recording
is enabled for all transaction activity at the
specified scope and below.

The “scope” argument can be included in a
$tr_open call multiple times, and the effects are
cumulative.

If the “scope” argument is missing from the
$tr_open call, then transaction recording is
enabled for the entire design.

Examples:

 $tr_open(“my_file”); // Start recording all transaction activity.

 my_tr_handle = $tr_open(“my_file”, “my_scope”, 1);
 // Start Record only at the “my_scope” level.

2.2. $tr_close: Close a recording file

$tr_close(
 tr_file_handle)

End all open transactions, and close the recording database file that is associated with the
tr_file_handle integer argument.

If the tr_file_handle argument is omitted, then the most recently opened file is closed.

2.3. $tr_set_recording: Enable/disable transaction recording at a
specified scope

$tr_set_recording(
 “scope” ,

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 8

 level,
 recording_control)

This tasks allows you to dynamically control transaction recording in different parts of the
Verilog design. If the recording_control argument is non-zero, then transactions are recorded
on streams that are defined in the specified scope and below, to the depth specified by the
level argument. If the recording_control argument is 0, then transaction recording is
suspended for the specified scopes. Calls to this task are cumulative.

When recording is suspended, any currently open transactions are closed.

When recording is resumed, any currently open transactions are immediately opened in the
recording file. The begin time of such transactions are set to the current simulation time.
The values of attributes of such transactions are not defined.

Example:

// Suspend recording at “my_scope” and 1 level below:
 $tr_set_recording(“my_scope”, 2, 0);

2.4. $tr_stream: Create a transaction stream

integer stream_handle = $tr_stream(
 “stream_name”,
 “scope”,
 “stream_kind”,
 tr_file_handle)

This function returns an integer handle to the newly created transaction recording stream in
the specified scope, with the specified stream name.

If the specified scope is omitted or NULL, then the current scope in which this call is made is
used.

The “stream_kind” specifies the kind of stream. This argument is optional and allows further
information to be associated with the stream. The default is “Transaction”.

The tr_file_handle refers to a particular recording file. If omitted, then the most recently
opened transaction recording file is used.

If the function fails, a warning is given and the stream_handle that is returned is 0. (Valid
stream_handles are > 0.)

Example:

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 9

 // Create a stream in the current scope:
 my_stream_handle = $tr_stream(“my_stream”);

2.5. $tr_generator: Create a transaction generator in a stream

integer generator_handle = $tr_generator(
 stream_handle,
 “generator_name”)

This function returns a handle to a newly created transaction generator on the specified
stream. The $tr_begin_attribute, $tr_end_attribute, and $tr_record_attribute tasks,
which are described later, are used to specifies the attributes associated with a generator. If
none of these calls are made, then the generator has no attributes.

Example:

 // Create a generator on a stream:
 $tr_generator(my_stream_handle, “my_generator”);

2.6. $tr_begin_attribute: Define an attribute of a generator that is
set at the beginning of a transaction

$tr_begin_attribute(
 generator_handle,
 Verilog_variable,
 “optional_name”,
 (list_of_attribute_properties))

This task defines an attribute of a transaction generator whose values are recorded at the
beginning of a transaction.

The generator_handle argument specifies the generator for which this attribute is being
defined.

The Verilog_variable is associated with a new attribute of this generator.

The “optional_name” is an optional argument that defines the name of this attribute. If
omitted the name is the simple name of the Verilog_variable.

The list_of_attribute_properties is an optional list of pairs of argument that can specify
further tool-specific information about the attribute. A tool should ignore any item in this list
if it’s not applicable to the tool. An example of such properties are:

The list_of_arguments is an optional list that associates Verilog variables with attributes.

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 10

In addition, each attribute can also have an optional list_of_attribute_properties, which
specify further information about the attribute. Properties include:

 “radix” Specifies how the attribute’s value will be displayed.
 “position” Specifies the position of this attribute in a display

Example:

 $tr_begin_attribtue(my_generator_handle, var_1);

 $tr_begin_attribute(my_generator_handle, var_2, “a_better_name”);

 // In this example the radix of the attribute is defined as hex, which a tool might
 // interpret for transaction display purposes:
 $tr_begin_attribute(my_generator_handle, var_3, , “radix”, “hex”);

2.7. $tr_end_attribute: Define an attribute of a generator that is set
at the end of a transaction

$tr_end_attribute(
 generator_handle,
 Verilog_variable,
 “optional_name”,
 (list_of_attribute_properties))

This task defines an attribute of a transaction generator whose values are recorded at the
beginning of a transaction.

The arguments are the same as the $tr_begin_attribute task, which was described above.

2.8. $tr_begin: Begin a transaction

This function has several forms, which each cause a new transaction to be created.

Integer transaction_handle = $tr_begin(
 generator_handle,
 optional_begin_time)

This form of the task begins a transaction of the specified generator_handle. The
optional_begin_time argument is of type time, and specifies the time at which the transaction
begins. This value can only be at the current simulation time, or in the past. If omitted, the
transaction begins at the current simulation time.

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 11

integer transaction_handle = $tr_begin(
 generator_handle,
 “relation_name”,
 other_transaction_handle,
 optional_begin_time)

This form of the function begins a transaction, and also establishes a relation link to the
transaction given by other_transction_handle. This form combines $tr_begin with $tr_link,
which is described later.

integer transaction_handle = $tr_begin(
 stream_handle,
 “generator_name”,
 optional_begin_time)

integer transaction_handle = $tr_begin(
 stream_handle,
 “generator_name”,
 “relation_name”
 other_transaction_handle,
 optional_begin_time)

In these forms of the function, only a transaction generator name is specified, in which case a
generator is automatically created in the specified stream_handle.

2.9. $tr_end: End a transaction

$tr_end(
 transaction_handle,
 optional_end_time)

This task ends a transaction, and records the values of Verilog variables that were given in
$tr_end_attribute calls. The optional_end_time argument is of type time, and specifies the
end time of this transaction. This time must be at the current time of in the past. If omitted
the current simulation time is used.

2.10. $tr_record_attribute: Record an attribute on a transaction

$tr_record_attribute(
 transaction_handle,

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 12

 Verilog_variable, “optional_attribute_name”,
 (list_of_attribute_properties))

This task allows you to record a transaction attribute’s value after a transaction has started.
The Verilog_variable and “optional_attribute_name,” and list_of_attribute_properties are
defined in $tr_begin_attribute.

For the generator of the specified transaction_handle, subsequent calls to this task for the
same Verilog_variable/optional_attribute_name do not require the optional
list_of_attribute_properties because the list is retained, and cannot be overridden.

2.11. $tr_get_transaction_handle: Get a transaction handle from a
stream

integer transaction_handle = $tr_get_transaction_handle(
 stream_handle)

This function returns the transaction_handle of the most recently started transaction on the
specified stream_handle.

2.12. $tr_link: Link two transactions

$tr_link(
 transaction_handle_1,
 transaction_handle_2,
 “relation_name”)

This task links transaction_handle_1 to transaction_handle_2, with the specified
relation_name. Transactions are linked because they might have a cause and effect relation
between them, and this additional information is useful if analysis is performed on
transaction activity.

3. Automatic Transaction Recording

This following is a proposal to allow automatic transaction recording:

1. When a user’s Verilog task or function is called, a transaction starts.
2. The input and inout arguments of the task are recorded as attributes in the transaction.
3. When the task returns, the transaction is ended, and out and inout arguments are

recorded as attributes. The return value of a function is also recorded.
4. Each task defines a stream which is positioned at the hierarchical position of the

module instance that contains the task.

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 13

5. Each task also defines a generator, which has attributes that are taken from the
arguments of the task.

Automatic transaction recording of parts of the design can be controlled by a variant of the
$tr_set_recording task. $tr_set_auto_recording refers only to automatic recording of user
Verilog tasks and functions.

4. Extensions to VCD for Transaction Recording

A method for storing transaction information in a VCD file is proposed here.

1. A stream defines a new scope
2. The stream contains a variable that contains transaction activity
3. Each generator defines a new scope in the stream
4. Each generator has a variable, with a value set at the beginning of simulation to a

positive unique integer ID
5. The attributes of a generator are defined as variables in the generator’s scope
6. When a transaction starts, the stream activity variable is set the generator’s ID
7. When the a transaction ends, the stream activity is set to the negative value of the

generator’s ID. Also, all the values of all attributes of the transactions are dumped.

5. Transaction Recording VPI Extensions

This section proposes to extend VPI to allow C access to transaction recording activity.

1. VPI applications can register callbacks so that they can be notified when transactions
start, end, and when transactions are linked. In addition, applications can get
callbacks when recording files are opened or closed, and when recording for parts of
the design is enabled or disabled.

2. VPI applications can traverse transaction objects: streams, generators, attributes.
Also, currently active transactions can be traversed.

3. VPI applications can create transaction objects, and can cause transaction activity.

Verilog Transaction Recording Extensions

Copyright Cadence Design Systems, Inc. 14

6. Example

The following is a simple example of using the Transaction tasks and functions:

module top;
 integer my_stream;
 integer my_read_generator;
 integer my_transaction_handle;
 reg [7:0] addr;
 reg [7:0] data;

 initial begin
 $tr_open(“my_transaction_file”);
 my_stream = $tr_stream(“my_stream”);
 my_read_generator = $tr_generator(my_stream, “my_read_generator”);
 $tr_begin_attribute(my_read_generator, addr);
 $tr_end_attribute(my_read_generator, data);
 my_transaction_handle = $tr_begin(my_read_generator);
 // The addr attribute is recorded
 #100 …
 $tr_end(my_transaction_handle); // The data attribute is recorded
 end
endmodule

